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Assuming that the Stokes flow past an arbitrary particle in a uniform stream is 
known for any three non-coplanar directions of flow, then the force on the body 
to O(R), for any direction of flow, is given explicitly in terms of these Stokes 
velocity fields. The Reynolds number (R) based on the maximum particle 
dimension is assumed small. For bodies with certain types of symmetry it 
suffices merely to know the Stokes resistance tensor for the body in order to 
calculate this force. In  this case the resulting formula is identical to that of 
Brenner (1961) andChester (1962). However, for bodies devoid ofsuchsymmetry, 
their formula is incomplete-there being an additional force a t  right angles to 
the uniform stream which remains invariant under a reversal of the flow at 
infinity. As this additional force is a l@ force, it  follows that the Brenner-Chester 
formula furnishes the correct drag on a body of arbitrary shape; moreover, this 
drag is always reversed to at  least O ( R )  by a reversal of the uniform flow at 
infinity. 

Exactly analogous formulae are derived using the classical Oseen equations, 
and it is shown that although this gives both the correct vector force on bodies 
with the above types of symmetry and the correct drag on bodies of arbitrary 
shape, it gives in general an incorrect lift component for completely arbitrary 
particles. 

Finally, the singular perturbation result for the force on an arbitrary body is 
extended to terms of O(R210g R). This higher-order contribution to the force is 
given explicitly in terms of the Stokes resistance tensor, and has the property of 
being reversed by a reversal of the flow at infinity, regardless of the geometry of 
the body. 

These results are collected in the Summary at the end of the paper. 

1. Introduction 
In a paper by Chester (1963) a formula was given which enables the hydro- 

dynamic force on certain particles immersed in a uniform fluid stream to be de- 
termined to terms of O(R) ,  solely from a knowledge of the corresponding Stokes 
forces. The same formula was originally given in an invariant form by Brenner 
(1961). However, this formula was proved by Chester only for those bodies whose 
symmetry is such that a reversal of the uniform flow at infinity reverses the 
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direction of the force on it, without change of magnitude. As pointed out by 
Chester, the question of whether this formula for the vector force applies to bodies 
of arbitrary shape has still to be answered. 

In the present paper, we shall settle this problem. By using techniques based 
on singular perturbat.ion methods (Proudman & Pearson 1957) for solving the 
Navier-Stokes equations at  small Reynolds numbers, we shall obtain the force 
F on an arbitrary particle as 

F = 1F+2F+(p~U}~(R) ,  (1.1) 

where 1F is the force given by the formula of Brenner and Chester, and 2F is a 
purely lift force,$ at right-angles to the direction of flow at infinity, which remains 
unaltered by a reversal of flow at infinity. 

Whereas lF can be expressed solely in terms of the Stokes resistance tensor for 
the body (Brenner 1961, 1963), the computation of 2F requires a detailed know- 
ledge of the complete Stokes velocity field. In  particular, the Stokes flow fields 
must be known for (any) three mutually perpendicular directions of streaming 
flow past the body. It will be shown that if the body possesses certain symmetry 
properties, more general than those given by Chester, then 2F will be identically 
zero. An example will be given of a body for which 2F is non-zero. 

In  the case of the sphere (Proudman & Pearson 1957) and spheroid (Breach 
1961) it  has been pointed out that to O(R) the drag determined by the singular 
perturbation technique is identical to that predicted by the classical Oseen 
equations, despite the fact that the latter does not furnish the correct asymptotic 
behaviour of the Navier-Stokes equations to this order in R. In  this paper, we 
shall show that for arbitrary bodies the force to O ( R )  as determined by the classi- 
cal Oseen method is 

where lF is the same as that in equation (1.1). 2 F  is a lift force, which in general is 
non-zero and different from 2F. However, for the bodies with the symmetry 
properties making 2F = 0,  we have also 2P = 0,  making the correct vector force 
and the classical Oseen vector force identical in such cases, to O(R) .  

As 2F and 2P are both Zift forces, it  follows that the classical Oseen equations 
predict the correct drug on a body of arbitrary shape, to the first order in R. 

We will then obtain the next higher term in the expansion for the force as 
derived by the singular perturbation technique, i.e. the term of O(R210gR). 
This extra term will be given in terms of only the Stokes resistance tensor rather 
than the whole Stokes velocity field. It will be found that this part of the force 
is reversed by a reversal of flow at infinity, even for an arbitrary body. 

- 
F = 1 F + 2 P + ( p ~ U ) O ( R 2 ) ,  (1.2) 

2. Fundamental equations 
Consider the streaming flow of an incompressible fluid past a stationary solid 

body of arbitrary shape. Let B’ denote the surface of this body. The local fluid 
motion satisfies the Navier-Stokes and continuity equations 

V’ . u’ = 0. ( 2 . l a ,  b )  pV’ . V‘U’ - V’p’ = pu’ . V’U’, 

$ 2F does not, however, contain the entire lift force on the body; lF also contains a com- 
ponent at  right-angles to the stream velocity vector. 
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With the exception of constant parameters such as ,u and p, primed symbols 
are dimensional and unprimed symbols non-dimensional. For streaming flow 
with velocity U (of magnitude U )  in the direction a (a unit vector), the boundary 
conditions are 

u’=  0 on B‘, (2.2) 

u’+ Ua as r’+oo; (2.3) 

r’ = {r;, rh, r;} is the position vector of a general point, and r’ = lr’l. 

less quantities: 
Let c be any characteristic body dimension and define the following dimension- 

(2.4) 

p = ( c /pU)  (p ’ -pk ) ,  u = u’/U, R = CUP/,LL; (2 .5 )  

pk  is the constant pressure at infinity. In  terms of these quantities the previous 
equations of motion and boundary conditions become 

V’U-VP = Ru.VU, V . U  = 0, (2.6u, h )  

{rl, r,, r3) = c-yr;, 4 7  4}, 

u = 0 on B, (2.7) 

u + a  as r-+co. (2.8) 

3. The inner and outer expansions 
The inner expansions are of the form 

w.1, r2, r3) = uo(r1, r2, r3) + Ru,(r,, r2, r3) +@), 

Pb-1, r2, r3) = POPl, r2, r3) +RPl(rl, r2, r3) + o m  

(3.1) 

(3.2) 

(see Proudman & Pearson 1957). Upon substituting these into (2.6), (2.7) and 
equating terms in RO, one obtains 

v2uo - vpo = 0, v .  uo = 0, 

uo = 0 on B. 
Likewise, equating terms in R1, 

V2u1-Vp1 = uo.vuo, V . U l  = 0, 

u1 = 0 on B. 

(3.3a, h )  

(3.4) 

(3.5a, h )  

(3.6) 

The conditions imposed on fields (uo,po), (ul, pl) are insufficient to determine 
them uniquely. However, additional conditions at  r = 00 are furnished by match- 
ing the inner and outer expansions. 

Dimensionless outer variables (PI, i,, i3) are defined as follows: 

{ Y l ,  72, f 3 )  = R{r1, r2, r3). 

The outer expansions are 
(3.7) 

u(rl, r,, r3) = a + RU,(Pl, i2, P 3 )  + o@), 

p(r l ,  r2, r3) = RzPl(Fl, i,, P 3 )  + o(R2). 

(3.8) 

(3.9) 

If the V operations in (2.6) are rewritten in terms of outer variables and the 
outer expansions substituted into the resulting equations, it  is found upon 
equating terms involving like order of R, that (Ul, PI) satisfies the equations 

V W - V P ~  = a.VUl, V . U ,  = 0. (3 .10a,b)  
- 

These are Oseen’s equations. 
36-2 
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From (2.8) and (3.8) the outer boundary condition satisfied by U, is 

U,+O as ?+GO. (3.11) 

The inner condition imposed on U, is dictated by the requirement that the 
outer and inner expansions be properly matched in their common domain of 
validity. 

4. Zeroth-order inner approximation 

term of the outer expansion. This requires that 
By the matching principle, u, must agree for large values of r with the leading 

u o + a  as r+co. (4 .1)  

The solution of (3.3), (3.4) and (4.1) is clearly the Stokes solution of the original 
problem. The force on the body arising from the physical motion (u&p;) is simply 
the Stokes force F,. For convenience we introduce the dimensionless force f on the 
body defined by the expression 

f = F/~~T,ucU. (4.2) 

In our analysis we shall require knowledge of the dimensionless Stokes field 
(u,, p,) at great distances from the body to O(r-,, T - ~ ) .  This may be obtained from 
Lamb’s (1932, pp. 594-7) general solution of the Stokes equations in terms of 
spherical harmonics as 

( (n + 3 )  r2Vpn - 2npn r} + r A V$n + Vq5n} , (4.3 a )  1 1 +m 

n=-m 2(2n+3) (n+ 1)  

m 

(4.36) 

where pn, 1c., and $n are harmonic functions of degree n in r .  Since u,, + a, as 
r + GO, there can be no term in the expansion (4.3a) of higher degree than YO, 
the term of order TO being equal to a. The first term in the expansion (4.36) for 
po must therefore be of O ( T ~ ) .  Now the term of O(r-l) in equation (4.3a) for u, 
is $(r2Vp-2+4p-2r}. The general form of pP2 is 2P.r/r3 where P is an arbitrary 
vector. Consider the term of O ( r 2 )  in equation (4 .3a) .  This is 

+p-3r + r A V@-2 + V$-,. 

u, = a + (r-I((p + r . pr/r2) + (+pP3r + r A V$-, + Vq5-,) + O ( r 3 ) .  
Therefore 

Since u, = 0 on the body and V.u ,  = 0 it follows that u,.dS = 0 for any 

surface S enclosing the body. Here dS’ = c2dS has the direction of the outer 
normal to the volume bounded by S. We define p0 as the term homogeneous in 
rf on the asymptotic expansion of u, for large r .  Hence 

Js 

U, = ,u, + -,u, + - 2 ~ 0  + o(r-3). 
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Now take S to be a sphere S, of radius L and centre a t  the origin. Upon replacing 
r by -r, ouo and -,u0 remain unaltered, whereas d S  changes sign; hence, it 
follows that ss, (ou,). dS  = 

J S L  

:i jS& (-2uo). d S  = 091 

dS = 0. 

Thus letting L + co, we find that 

which requires that 

Now, q5-l = A/r,  where A is a constant, while ip-,r. d S  vanishes since p-3 is a 
spherical harmonic. Hence 

which requires that A = 0.  

r A V@-, = r A y/r3.  Furthermore, p-, has the general form 
The general form of $, is y.r/r3 where y is a constant vector. Hence 

using the summation convention, where mij may be taken 
i, j and mii = 0. Thus the asymptotic expansion of uo is 

to be symmetric in 

+ 0 ( ~ - 3 ) .  (4.4) 

We now obtain an alternative form for the O(r-2) term in equation (4.4). 
Taking unit vectors i,, i,, i, along the axes, define a stokeslet pointing along the 
r,-axis at the origin to be that which gives rise to a velocity field of 

Differentiating this with respect to either r,, r2 or r,, we obtain a term homo- 
geneous in r-, which must satisfy the Stokes equations, and so must be included 
in the O(r-,) term of equation (4.4). Define 

$ Actually, any sphere S, may be used in evaluating this integral since -$,, is homo- 
geneous in r-% whereas dS is homogeneous in r2 .  
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hence 

and 

thus 

Now from equation (4.4) we have 

= - & ( k z u j + z k U j )  m k ~ - ~ ~ , ~ k ~ : , ( k z U j - z k U j )  

- kl - 
uj{ - 8mkl - &klm r m >  

= hpq(PPUj)) 

where A,, is a tensor, not in general symmetric. 
Write [ s (a) ]  for the velocity field due to a stokeslet of value a at the origin, i.e. 

Also let [t(a)] be the corresponding pressure field, i.e. 

9 
Y 

[t(a)] = -- a .  r. 
r3 

Therefore (WI) = i p .  V[s(i ,)] .  

The asymptotic expansion (4.4) for uo now becomes 

uo = a + [s( p ) ]  + hp,ip. V[s(iq)] + O(r-3) .  (4.7a) 

The corresponding pressure must therefore be 

Po = [ t (P)1 + hpqip. V[t(iq)l+ o(r-4)- (4 .7b )  

The dimensionless force f on the body, defined by equation (4.2), canbe expressed 
in the form 

f = fo+Rf1+o(R), 

where fo is the Stokes force on the body due to (uo, po) ,  and fi the force due to 

We will now find the Stokes force fo in terms of the coefficients involved in the 

(4.8) 

(% Pl). 

asymptotic expansions (4 .7) .  If (po) i j  is the dimensionless stress tensor 

[(POXj = (UlU/c) (PO)ijI? 

then (po)ij , i  = 0. Integrate this over the volume V, bounded by the surface B 
of the body, and the large sphere S,. Then 
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f ,  is the dimensionless Stokes force on the body and so 

567 

where (e,)ij = ~{(zA,)~,~ + (zA,)~,~) is the dimensionless rate-of-strain tensor 
[ (e , ) i j  = (Ujc)  (eo) i j ] .  As L + co, the contributions to the integrals from the terms 
of order (+, r-3) in (u, ,p , )  tend to zero. Thus the contribution to f ,  comes 
entirely from the stokeslet term [s(p)]. On calculating (p,) and (eo)ij  in spherical 
polar co-ordinates with axis in the direction (3 and substituting in equation 

f - -4p. (4.10) 
(4.9) we find that 

Expressing the term O(r-1, r-2) in (u,, p , )  in terms off, we obtain 

0 -  3 

( 4 . 1 1 )  1 u, = a - $[s(f,)] + h,,i,. V[s(i,)] + O(r-3),  

p ,  = - i [ t ( f , ) ]  +A,$, . V[t(i,)] + O(r-*). 

In  deriving equation (4.11), we have not chosen a particular origin. A change 
of origin will in general alter the terms of order (+, r3) in (uo,po) ,  while the terms 
of order fro) (r-1) in u, and order (r-2) in p, are invariant. 

5. First-order outer approximation 
Expressing the Stokes solution (u,, p,) in terms of the outer variables we obtain 

(5.1) 1 u, = a - $R[s"(f,)] + O(Rz), 

P O  = -$R2[l(fo)] + O(R3), 

where [G(f,)] and [ l ( fo) ]  are the values of [s(f,)] and [t(fo)] respectively in which 
r is replaced by P. Hence for (Ul, Pl) to be properly matched with the inner 
expansion, we require 

as ? +  0, 

(5.2) 

(Ul, PI) satisfy equations (3.10) with boundary conditions (3 .11)  and (5.2), and 
it may be shown that these have the solution$ 

exp[-+(?-P.a)] 

- -  
+#{I - [ 1  ++(F- P .a)]exp [ - +(F- F.  a)]} (f,.V)V log(?- E .a) ,  (5.3a) 

( 5 . 3 b )  
3 -  Pl = - - f  2F3 0.r. 

$ Throughout the analysis, 'log' refers to the natural logarithm. 
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The expansions of U, and PI for small r" are thus 

H. Brenner and R. G. Cox 

1 
a.f, T + F .foa- 3a. Ff, -- r2 a .  ff,. T r  

+ W), 
(5.4) 

3 
4 = -@f,.F* I 

Rearranging terms, and changing to the inner variables we obtain 

RU, = - $[s(f,)] + &R{a. V[r( - 3f0 + r . fa r/rz)] + ( 3f0 - a. fa a)) + O(R2). (5.5) 

The term -$[s(f,)] has already been matched on to the zeroth-order inner 

( 5 4  
solution. Also 

R2P, = -(3/2r3)fo.r, 

which has similarly been matched already 

6. First-order inner approximation 
(u,, p,) are to satisfy the equations (3 .5 )  with the boundary conditions 

u1 = 0 on B, 
(6.1) 

where the second condition is the matching condition derived from equation 
(5 .5) .  Furthermore, from equation (5.6) we also require that 

u, - +z{a. ~ [ r (  - 3f0 + r. for/r2)1 + (3f0 - a .  f,a)} as r -+ co, I 

p 1  = o(r-l)  as r+co. (6.2) 

From the expression for u,, given in (4.11) we obtain 

u,. VU, = -$a. V[s(fo)] +hpa(a. V) (ip . V) [s(i,)] 

+?+(fa)] .V[S(~,)] +o(Y-4).  (6.3) 

v2un - vptl = [s($)], v.  U I I  = 0. (6.4) 

Consider the equations 

Since [~(f,)]  is axially symmetric about the direction (fa), we see that there is a 
particular integral for U" also axially symmetric. Thus, by taking spherical polar 
axes with axis in the direction of fa, equation (6.4) may be solved in terms of a 
stream function to give as the particular integral 

(6 .5 )  U" = - 4 G{ - 3f0 + r .  f,r/rZ), p" = 0. 

v2ua - VpIN = [s(f,)]. V[S(f,)], v .  UN' = 0 ,  

In a similar manner a particular integral of the equations 

(6.6) 

(6.7b) 

is u" = ;r-2{fo. rf, - j i  r + .%?(fa. r ) 2  r/r2), (6.7a) 

p" = r-2 { - f i  + 3(f,. r)2/r2). 
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Consider now a general equation of the form 

V2u-Vp = g(r), V.u = 0, (6.8) 

where g(r) is a given vector field. Then, if d is a constant vector, 

V2(d.Vu)-V(d.Vp) = d.V[g(r)], V.(d.Vu) = 0, 

and hence u* = d .Vu, p* = d.Vp, is a solution of the equations 

V2u*-Vp* = d.V[g(r)], V.u* = 0. (6.9) 

Using this result, together with the solutions (6.5) and (6.7), we may immedi- 
ately write down a particular integral of the equations (3.5) for (u,, p,) as 

ui = +.",a.V[r( -3fo+fo.rr/r2)] 

- $hp,(a. V) (i, . V) [r(  - 3iq + r . iqr/rz)] 

+&-2{fo.rfo-f$r + 3(for)2r/r2}+O(r-2), (6.10a) 

p1 = +&r2{ -fg + 2(f0. r)2/r2} + O(r-3). (6.lOb) 

To this must be added a complementary function which to the required order is 
of the form 

where y and S are constant vectors. From the boundary conditions a t  infinity, 
we see that 

y = &3fo-a.foa).  (6.11) 

Hence the complete solution for (ul,pl) is 

u, = y + [s(S)] + O ( r 2 ) ,  p ,  = [t(S)] + O ( Y - ~ ) ,  

u1 = &(a. 0) [r(  - 3f0 + r . fo r/r2)] + &( 3f0 - a .  fa a) 
- 'A pq(a. 0) (ip . V) [r(  - 3iq + r . i,r/r2)] 

+&r-2fforf0 -fir + 2(fo. r)2r/r2} + [s(S)] + 0 ( r 2 ) ,  ( 6 . 1 2 ~ )  

(6.12 b) 

Since p1 = 0 ( r 2 )  as r -+ 00, we see that the boundary condition (6.2) is also 
satisfied. The constant vector S is determined by the boundary condition that 
w1 = 0 on the surface B of the body. 

If ( P , ) ~ ~  is the dimensionless stress tensor due to (ul,p,) then the equations 
(3.5) are equivalent to 

h ) i j , j  = (U0) j  ( ~ o ) i . j ,  (Ul ) j , j  = 0. (6.13) 

Since V . uo = ( u ~ ) ~ , ~  = 0, we may write the latter in the form 

p, = & - 2 {  - f $ + 2(f0. r)2/r2} + [@)I + O ( F ~ ) .  

[(Plhj - (UO)i(UO)jl,j = 0. 

Integrating this over the volume V, between B and S,  we obtain 

hence (6.14) 
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Thus, in order to calculate (fl), ( p J i j  must be known to O(r-2) for large values 
of r. Therefore we need to know (ul,pl) to O(r-l, r-2) and in particular the value 
of 6. However, it  will be found that if the Stokes velocity field uo is known for 
any three non-coplanar directions of flow at infinity then, by the use of certain 
integral relations, the force fi due to (ul, pl) (or equivalently the value of S), can 
be expressed solely in terms of uo. 

7. First-order force 

and proceed subsequently to calculate the force fl. 

of (dimensionless) velocity V at infinity, V being arbitrary. Then 

We now obtain the integral relations mentioned in the preceding paragraph 

Let (u*,p*) be the (dimensionless) Stokes velocity field due to a uniform stream 

(7.1) 1 v2u*-vp* = 0 v.u* = 0; 

u*=O on B, u * + V  as r+m. 

The equation of motion may be put in the form 

p?. 2 3 . 3  . = 0, (7.2) 

( P l ) i j , j  = [(UO)i (UO)jl,j. (7.3) 

(7.4) 

(7.5) 

wherep; is the stress tensor due to (u*, p*).  From equation (6.13), 

Take the scalar product of (7.3) with u:, and (7.2) with (uJi and subtract to 
obtain 

Therefore 
(u*)i ( ~ l ) i j , j  - (uJi (P*)ij,j = [(uo)i (uO)jl,j (u*)i* 

[(u*)i ( ~ J i j -  (uJi ( ~ * ) i j l , j  - (u*)i,j ( ~ J i j  + (ul)t,j @ * ) i j  = [(uo)i (uO)jl,j 

Since V .  u1 = V .  u* = 0, it follows (Lamb 1932, p. 617) that 

(ul)i,j (P*)ij = (u*)i,j ( ~ l ) i i *  

From equations (7.5) and (7.6) 

Since u* = u1 = uo = 0 on B, the surface integrals over B vanish. Thus, if we let 
L -+ 00, equation (7.9) may be written 

r 
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where I? is the whole of space external to the surface B, and 

r 

n 

r 

(7 .11 )  

(7.12) 

(7.13) 

(7.14) 

Our motivation for introducing the extraneous integral (I,) will shortly become 
clear. We now evaluate each of these surface integrals in turn. 

Consider ( I l ) .  The terms in the integrand only contribute to ( I l )  if they do not 
tend to zero faster than as r + co. Hence since u* = O(1) and u1 = O(1) as 
r --f m,it follows that contributions to (I,) come only from the terms o ~ *  and -lu*, 
i.e. the terms homogeneous in r0 and r-l in the asymptotic expansion of u* 
for large r .  Writing (-npl)ij as the stress tensor corresponding to the velocity 
homogeneous in r-" in the asymptotic expansion of ul, we obtain 

where E is a constant vector and (oel)ij is the rate of strain tensor of the velocity 
homogeneous in ro in the asymptotic expansion of ul. It has been noted that the 
corresponding pressure is zero from equation (6.12 b). Now 

(oul) = &a. V) [r( - 3f0 + r.  for/r2)] +&(3f0 - a.  foa).  

Hence the value of (oel)ij is due only to the term 

&(a. V) [r( - 3f0 + r . for/r2)] 

since &(3f0 - a .foa)  is a constant vector. Therefore (oel)ij remains unaltered, 
whereas (5 + [s(E)]~} (oel)ijdSj changes sign on replacing r by - r. Therefore 

Now J (opl) i jdSj  = 0 as may be shown by replacing - r by r. Hence 
SL 

(11) = vi lim IsL (Pl)ijdRj* 
L+m 

Thus for equation (6.14) we obtain 
r 
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But, from (7.14), the last integral is - (I4); hence, 
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{(Ill + (4)> = snK(f1)i. 
Next, consider ( I , ) .  We note that 

1 
r 

u* = V + - ( r + r . ~ r / r ~ ) + O ( r - ~ ) ,  

the corresponding pressure being 2(r. r)/r3 + O(r-3). Since 

(7.15) 

p). 23 = -p*sij +((u"),,j+ (U*)j ,J, 

it  follows that & is O(r-2) and the term (-lp*)ij changes sign on replacing r by 
- r. 

Hence contributions to (I,) come only from o ~ l .  It follows that 

(7.16) 

where it has been noted that the other term 

&(a.V) [r(  -3fo+r.f0r/P)], 

in ,u, gives no contribution to (I,) (as may be seen by replacing r by - r). From 
equation (7.2), integrating over the volume V, and letting L -+ co, we obtain 

Hence (7.17) 

where (f*)i is the dimensionless Stokes force due to (u*, p*).  From equations (7.16) 
and (7.17) 

(7.18) 

For Stokes flow it has been shown (Brenner 1963) that the (dimensional) 
Stokes force on a body of arbitrary shape, past which fluid streams with (dimen- 
sional) velocity W', can be expressed in the invariant form 6 7 r , ~ c $ ~ ~ ( W ' ) ~  where 
q5ij is a symmetric tensor, termed the (dimensionless) Stokes resistance tensor. 
(This tensor differs by a factor of 6n from the one used in a previous paper by 
Brenner 1961.) Hence the dimensionless force due to a dimensionless velocity 
W is $ijT+i. Consequently 

(fob = $ik% ( f*) i  = $ik% (7.19) 

Therefore ( 1 2 )  = i%(6n) (3$imam-$jlalajai) $ik%. (7.80) 

Consider now (I3). When r is replaced by -r, the terms homogeneous in ro 
and r--1 in the asymptotic expansions of both uo and u* remain unaltered, where- 
as d S  changes sign. Hence the only contributions to (&) can come from cases 
where one of the three factors in the integrand is homogeneous in r-, while the 
rest is homogeneous in Y o ,  Thus 
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Any sphere X, will do in evaluating this integral since the integrands are all 
homogeneous in r2, whereas d S j  is homogeneous in r2. 

But, as discussed in 5 4, " 

whence ( ~ ~ 1  = J { a i ~ j ( - ~ u * ) i  + aj ~ ( - ~ u ~ ) i >  dsj.  (7.31) 

Lastly, consider (I4). By arguments similar to those used for (I3) we obtain 
SL 

(14) = -/ K"j(-2u0)idSj. (7.22) 

in which = 1 (--2~*)idSj, (I6) = (uo)i(e*)i j (uo)jdV.  (7.24) 

S L  

Substitution of (7.15) and (7.20) to (7.22) into (7.10) yields 

6n[ (fi)i - &{3$km $ki - "j $jl ".l $mi} am] = "i aj(lg)ij - ( '6) 7 ( .' 3, 

S L  r 
Because of the linearity of the Stokes equations and the boundary conditions, 

there exists a tensor Kij(r) (not, in general, symmetric) which is a function of 

position such that (uo)i = Kij(r) aj, (u*li = Kij(r) 5, (7.25) 

This tensor can be determined from a knowledge of the Stokes velocity fields 
arising from streaming flows parallel to any three non-coplanar directions. 
Define (tKcj) to be that part of Kf5  which is homogeneous iii rt in its asymptotic 
expansion for large values of r .  Then for we obtain 

" 
(7.36) 

Consider (I ,) .  It is easily shown that 

Thus, 

{+u~(uo)j} , jdV since V .uo = 0 

Qut(uo)jdSj since u0 = 0 on B. 

By using arguments similar to those employed in the evaluation of ( I3) ,  we find 
that the last integral reduces to 

(7.28) 

Substituting into (7.37), we obtain (16). 
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The latter expression, along with (7.26)) when substituted in (7.23) gives, on 
changing indices, 

'nK[(fi)i +%3$ij - ' i j ( a k $ k l a J } $ j r n a r n I  

The vector V was chosen arbitrarily and so 
1 

(fib = i% {3$ij - ' i j ( a k  $k~ad> $jrn a m  + a m  aj('it - ai G m j ?  ( 7.30) 

in which Blnlj is a (dimensionless) third-order tensor given by 

Blrnj = lsz ( - 2 ~ ~ ~ 1 ) d s j - I ~ K k m K p j ~ ( K ~ l , p  f K p l , k ) d v .  (7.31) 

Now define ( v ~ ) ~  as the j t h  component of the velocity field due to a Stokes 
flow around the body due to a uniform stream of unit strength in the i th  direc- 
tion. Similarly, define (e i ) jk  as the ( j ,  k) component of the rate-of-strain tensor 
corresponding to this flow. Therefore 

(7.33) K. .  21 = ('.). 3 a' 

as can be seen from equations (7.25). Hence from equation (7.31) 

(7.33) 

Also, if A,rnj is defined as A l m j  . = -( B Blmj + B l j m ) )  (7.34) 

we note that Blmi in equation (7.30) may be replaced by Atmj. From equation 
(7.19) (7.35) 

Upon expressing this equation in dimensional variables, we obtain the main 
results of our present section, namely, that the force F on the particle to O(R), 
due to a uniform velocity U at infinity, is given by 
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Azlni is symmetric in the indices m andj, and is determined by the Stokes velocity 
fields due to flows a t  infinity along each of the three axes. We have used the 
symbols (lF)i and (2F)i to mean those parts of the force Fi which are respectively 
reversed and unaltered by a reversal of flow at infinity (to the order in R con- 
sidered). This may be checked by replacing by - & 

We notice that for 2F given by equations (7.37) 

U , ( 2 l q i  = 0. (7.38) 

Thus 2F is simply a lift force, being perpendicular to the stream velocity U at 
infinity. 2F does not, however, constitute the entire lift force experienced by the 
body; lF also contains a component at  right-angles to U. 

In deriving equations (7.37) we have a t  no point stated specifically what 
value of c is to be taken, and so they must be independent of c .  That this is indeed 
so is easily seen by noting that & and A ,  are proportional to c-l and c - ~ ,  
respectively. 

8. Discussion of the force to O(R) 
To the first-order in R, the vector force F on a body of arbitrary shape is given 

in terms of the stream velocity U at infinity by equation (7.37). 
Since 2F is a lift force, a t  right-angles to U, it  follows that the drag (i.e. the 

component of the vector force parallel to U) experienced by an arbitrary particle 
is given by that component of lF lying parallel to U. Thus if the 1-axis, say, cor- 
responds to the direction of streaming flow, then the drag may be calculated from 
the expression 

= 6 7 1 ; 1 ~ ~ U [ S i j + ~ ~ R { 3 ~ i j - S ~ j ( ~ j k ~ k z ~ ~ / U ~ ) } ]  $j,(U,/U) +{;~LcU}O(R) (8.1) 

by setting i = 1 and q. = SIj U .  In 8 10 we generalize and elaborate on this drag 
formula more fully. Observe that the ‘reversibility’ of lF implies that the 
magnitude of this drag remains invariant to a reversal of the flow at infinity, at  
least to the order in R considered. This seems a rather surprising result, for in the 
absence of symmetry the flow field itself is not reversed to this order. 

More general results, pertaining to the vector force on the body, may be 
deduced for bodies possessing certain symmetries. In  particular, if the sym- 
metry of the body demands that the vector force be wholly reversed in reverse 
flow (to all orders in R),  irrespective of the direction of U, then the ‘irreversi- 
bility ’ of 2F requires that the latter vanish. Hence from (7.37), the vector force on 
the body (e.g. an ellipsoid in arbitrary orientation) is given by (8.1) for all 
directions of flow. This formula is identical to that of Brenner (1961) and Chester 
(1962). In  a wider sense, if symmetry requires only that a certain component of 
F be reversed in reverse flow, then this component of 2F must be zero and the 
same component of F is given correctly by (8.1)-in agreement with Chester’s 
(1962) conclusion. 

We now list some types of symmetry$ for bodies for which one may conclude 
that some or all of the components of force on the body to O(R) are given by equa- 
tion (8. l ) .  A detailed proof is given in Appendix l. 

$ For some further comments, see end of paper. 
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Consider an arbitrary set of mutually perpendicular axes labelled 1, 2 and 3. 
Let the plane 1 contain both axes 2 and 3. Then we have the following cases. 

(I) (2F)i vanishes for all directions of U if the body transforms into itself under 
Either (i) Triple reflexion ( 8 . 2 ~ )  

(i.e. a successive reflexion in each of the planes 1, 2 and 3) 

Or (ii) Rotations through +n about each of axes 1, 2 and 3. (8.2b) 
Neither of these conditions is included in the other. Also it follows from sym- 
metry considerations that a body satisfying (i) is one for which the vector force is 
reversed to all orders in R if the velocity at  infinity is reversed. Hence (2P)i  must 
be zero, and in fact this is a case where Chester’s (1962) result may be used. 

(11) (2F)i  vanishes fo r  U lying in the plane 3 if the body transforms into itself 
under 

Rotation through n about axis 1;  Rotation through in about axis 3. (8.3) 
(111) (2F)3 vanishes for U lying in the plane 3 if the body transforms into itself 

under 

Reflexion in plane 3. (8.4) 

Here, symmetry considerations dictate that the component of lift on the body in 
direction 3 be zero to all orders in R. Hence (2P)3 and ( IF) ,  must each be zero. 

(IV) (2F)l and (2F)2 both vanish for U lying in the plane 3 if the body trans- 
forms into itself under 

( 8 . 5 )  

For bodies satisfying this condition, symmetry requires that a reversal of flow 
at infinity reverse that component of F lying in plane 3, to all orders in R. Hence 
(2F)i  must be zero. (This is another case where Chester’s result would apply.) 

(V) (2J’)i vanishes for U lying along the axis 1 if the body transforms into itself 
under 

Rotation through n about axis 3. 

Rotation through n about axis 1. (8.6) 
It is seen, by symmetry, that such a body is one for which there can be no lift to all 
orders in the Reynolds number. Hence (2F)2 and (2F) ,  are all zero. 
Also (2F)l is zero since (2F)i CG is always zero. 

(VI) (2F)1 and (V), both vanish for U lying along the axis 1 if the body trans- 
forms into itself under 

Reflexion in plane 3. (8.7) 
This result is a combination of the case (111), together with the result of the 
vanishing of the contribution of (2P)( to the drag. 

By considering uniform streaming past a slightly deformed sphere, it may be 
shown that the contribution 2F to the vector force on the body is not always zero. 
A detailed proof is given in Appendix 2. 

9. Oseen force 
In  the case of the sphere (Proudman & Pearson 1957) and spheroid (Breach 

1961), it has been pointed out that to O(R) the drag determined by the singular 
perturbation technique is identical to that predicted by the classical Oseen 



Resistance to a particle of arbitrary shape 577 

equations, despite the fact that the latter do not furnish the correct asymptotic 
behaviour of the Navier-Stokes equations to the first order in R. I n  order to 
establish the general circumstances for which this conclusion is valid, we now 
proceed to derive, on the basis of the classical Oseen equations, the counterpart 
of (7.37) for the Oseen force. 

Thus we wish to soIve the equations 

together with the boundary conditions 
pV’.  V’U - V p ’  = p u .  V’U’, V’ . u’ = 0, (9.la, b) 

U’ = 0 on B‘, (9.2) 

u‘+ U a  as r’+co, (9.3) 
where all the variables are dimensional (cf. equations (2.1) to (2.3)). 

Define dimensionless variables as in $ 2 to give 

V u - V p  = R a . V u ,  V . u  = 0, (9.4) 
u = 0 on B, (9.5) 

u + a  as r+co. (9.6) 
This system of equations may be solved to O ( R )  by forming inner and outer 
expansions (3 3) comparable to those employed in solving the analogous equa- 
tions (2.6) to (2.8). 

The zeroth-order inner approximation (3 4) and first-order outer approxima- 
tion ($ 5 )  are unaltered. However, for the first-order inner approximation, 
(u,, p,) now satisfies the equations 

(9.7) 

(9.8) 

(9.9) 

V2u, - V p ,  = a. Vuo, V . u, = 0, 

I u1 = 0 on B 

u, - &{(a.V) [ r (  -3fo+r.for/r2)]+(3fo-a.foa)}, 
y1 - o(r-l)  as r+co, 

and 

where 

By the methods used in $ 6 ,  we find that the values of ul and p 1  are now 

u, = +&(a. V) [r( - 3f0 + r . for/r2)] + &3f0 - a. foa )  

- $A,,(a. V) (i, . V) [r( - 3i, + r . iar/rz)] + [s(S”)] + O ( r 2 ) ,  

a . V u o  = -$a.V[s(f,)]+A,,(a.V) (i , .V) [ ~ ( i ~ ) ] + O ( r - ~ ) .  

(9.10 a) 
(9.106) 

where the constant vector S” is determined by the boundary condition that 
u, = 0 on the surface B. Comparing equations (9.10) with (6.12), we see that 
the values of u, and pl  are not identical. Thus we have verified that the classical 
Oseen equations do not give the correct asymptotic behaviour to O(R). 

p ,  = [ t ( s y  + o(r--3), 

The dimensionless force f, (given before by (6.14)) is now 

(9.11) 

37 
(9.12) 

Fluid Mech. 17 
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This then leads to a relation identical to (7.23) except that we now have 

H .  Brenner and R. G .  Cox 

(16) = (uo)i ( u * ) i , j a j d v .  
r 

This, in turn, leads to a relation of the same form as (7.30) except that now 

(9.13) 

Hence the force, say, on the particle as calculated from Oseen’s equation is 

Fi = ( 1 P ) , + ( 2 P ) i + { ~ ~ U } ~ ( R ) ,  ( 9 . 1 4 ~ )  
- 

where 

I (IF), = Sn/~cU[Sij  +&R{3$ij - s,j(uk$k,q/u2)}l $ji,(um/’u)~ 
(2P)i = /AcUR[( U, U,/ U 2 )  {Sit - (q q/ U2)]  .&j, 

(9.14b) 
I 

It should be noted that ( I s ) ,  is identical to (lF){ and that the formula for (zp)i is 
the same as that for (2F)i with AZmj replaced by a different tensor The latter, 
like AZmj, is symmetric in the indices nz andj.  Thus (2p)i ,  like (2F) i ,  is a lift force. 
It therefore follows that the drag on a body of arbitrary shape, as determined 
by the classical Oseen method, is identical to that predicted by the singular 
perturbation technique, at  least to O(R). 

It is clear that the discussion in $8  and Appendix 1, involving AZmj, may 
equally well be applied to Almj. Thus, if for some direction of flow, a body has one 
of the types of symmetry described in $8, causing a particular component of 
(2F) ,  to vanish, then the same component of (2F) ,  must vanish. Thus for that 
particular component 

Hence 

i.e. for that particular component, the value of the Oseen force on the body to 
O(R) is identical to that predicted by the singular perturbation technique. 

However, by considering again the deformed sphere (see the last paragraph 
of $8) it may be shown that 2F is not always the same as 2F. We conclude, there- 
fore, that the Oseen method does not always furnish the correct lift component. 
A detailed proof of this statement is given in Appendix 2. 

P,  = + {pcU} o(R). 

Pi = I$ + {pcU} o(R), 

10. Second-order inner approximation 
In  this section we resume the singular perturbation analysis terminated in 

$7 .  Thereby, we obtain the next higher approximation, in orders of R, to the 
force on a body of arbitrary shape. 

We now add to the inner expansions (3.1), (3.2),  

u = uo+Ru1+o(R), p = P ~ + R P ~ + O ( R ) ,  
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the additional terms B,(R) u2 and 0,(R)p,, respectively. In  the previous treat- 
ments of the sphere (Proudman & Pearson 1957) and spheroid (Breach 1961) 
i t  has been shown that the assumption 8,(R) = R2 leads to a particular integral 
for U, containing a term in log r .  This will be shown to be true in the general case, 
the term being of the form d log r ,  where d is a non-zero constant vector. When 
expressed in the outer variables, 

R2(d log r )  = R2(d log 7) - (R2 log R) d. 

Thusthereisapparentlya terminR210gRandonein R310gRintheouter expansion 
of the velocity and pressure fields. Such a field, (n2, P2) say, would satisfy the 
Oseen equations and the boundary conditions 

8 , + d  as ? - z O ,  8 , + 0  as ?+a. 

By considering w = A 8,, we find that w satisfies the differential equations - - - 
V2w = a.Vw, V . w  = 0. 

Upon dot-multiplying the first of these equations by w and employing the 
Divergence theorem, we eventually obtain 

where RL and f l l  are the surfaces of spheres of radii ? = L and 1 (2 < L)  with centre 
at the origin. On letting 1 -+ 0 and L -+ OD and observing that the right-hand 
integral is non-negative, we may prove that w = 0. Hence V A 8, =-q. 8, = 0. 
It may be shown that it is impossible to satisfy these equations for U, with the 
above boundary conditions. Hence there can be no R2 log R term in the outer 
expansion. There must therefore be a term in the inner expansion, which for 
large r is + (R210g R) d, such that when added to the term R2(d logr) (arising from 
the particular integral of (u2,p2)) gives rise only to a term R2 (dlog?) when ex- 
pressed in outer variables. Thus the correct form of the inner expansion is 

- 

u = U, + Ru, -I- (E2  log R)  U, + R28, + 0(R2), (10.1) 

with a comparable expansion for p. 

(u,, p,) satisfies Stokes equations, 
Upon substituting these into the Navier-Stokes equations (2.6) we find that 

'i v2u2 - vp2 = 0, v . u, = 0, 

I and the boundary conditions 
u, = 0 on B,  
u,+d as r + a ,  

(10.3) 

and (iiz,.Pz) satisfies 

vzti, - vp, = u, . vu, + u,. VU,, v . ti, = 0. (10.3) 

The log r term which eventually arises in ii, can only be derived from those terms 
in (u,. Vu, + u,. Vu,) which are O(r--2). Thus, since u, and u, are both of O(ro) ,  

37-2 
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each need only be known correctly to O(r- I ) .  The asymptotic forms of these fields, 
given in (4.11) and (6.12), are accurate to this degree of approximation. Now 

u0 . Vu, + ul . Vu, = &(a. V) (a. V) [r( - 3f0 + r . f,r/r2)] 

+ ( a . V )  [-$A,,(a.V)(i,.V){r( -3iq+r.iqr/r2)) 

+&r-2{f,.rfO-f~r+ 2(f,.r)2r/r2}+ [s(S)]] 

-$[s(f,)].V{&(a.V) [r(  -3fo+r.f,r/r2)]} 

+&(3f0 - a. foa). V{ -$[s(f,)]} 

+&((a.V) [r( -3f,+r.f,r/r2)]}.V{ -$[s(f,)]} 

+ 0 ( ~ - 3 ) .  (10.4) 
Consider the equations 

Vzu(iv) - V p (iv) = r (  - 3iq + r . i,r/rZ)) V .  div) = 0. (10.5) 

By taking spherical polar axes, with axis in the direction of i, and solving in terms 
of a stream function we find that 

u(iv) = -1- 1 8 r  3 [-5i,+3r.iqr/r2], p(iv) = 0. (10.6) 

By the arguments used in 0 6 we see that the solution of 

V2u - V p  = &(a. V) (a. V) [ r (  - 3f0 + r. f,r/r2)] 

+ ( a . V )  [-$Apq(a.V)(iD.V){r( -3i,+r.iqr/r2)}, 

with V . u = O ,  is p = O  

and u = ?‘(a. V) (a. V) {&r3( - 5f0 + 3r .  for/@)} 
+ (a. V) [ - &,(a. V) (i,. V) {&r3( - 5i, + 3r .  i,r/r2)}]. 

Clearly this does not involve a log r term since we are differentiating a polynomial 
in r .  Similarly, the solution of 

V2u - V p  = a. V[s(S)] + &( 3f0 - a. f, a) . V{ - $[s(f,)]}, 

with V . u = 0, for u cannot involve log r .  We have here used the fact that the 
solution (6.5) of the equation (6.4) does not involve a log r term. 

Hence we see that the part of the particular integral of equation (10.3) for ii2 
which involves log r is the same as that part of the particular integral involving 
log r of the following equations : 

V2iiz - Vpz = +‘(a. V) [+{fa. rf, -f$ r + Z(f,. r ) 2  r/r2}] 

- $[s(f,)] . V{&(a. V) [ r (  - 3f0 + f,. rr/r2)]} 

+f3c{(a.V) [r( -3f,+f,. rr/r2)]).V{-$[s(fo)])+O(r-3), ( 1 0 . 7 ~ )  

v.a; = 0. (10.7 b) 

After a tedious but straightforward calculation ( 1 0 . 7 4  yields 

V25z - Vji; = &[{Sf,. a/r2  - 6a. rf,. r/r4} f, 

+{8f$a.r/r4- 26(f0.r)2(a.r)/r6+ 10a.f,r.f,/r4)r 

+ {4(f0. r)2/r4- 3fo”/r2}a] + O ( r 3 ) .  (10.8) 



Resistance to a particle of arbitrary shape 581 

Upon taking the divergence of this equation we find that 

V2p: = #[f,. ar .f,/r4 - (f,. r)2 (a. r)/r6] + O(Y-~).  (10.9) 

A particular integral of this is 

p z  = &[(f,. r ) 2  ( a .  r)/r4+f;(a. r)/r2- 4(f,.a) (r .f,)/r2] +O(r--2). (10.10) 

This makes 

Vpz  = &[{ - 4f,. a/r2 + 3a. rf,. r/r4} f, 

+ { - 2f; a .  r/r4 - 4(f0. r)2 (a. r)/r6 + 8 a .  f o r .  f,/r4) r 

+{(f,.r)2/r4+ft/r2}a] + O ( T - ~ ) .  (10.11) 

From equations (10.8) and (10.11) we obtain the following equations for fig, 

V2iic = &[{7f0. a/r2 - 14a. rf,. r/r4}f0 

+{20f,2a.r/r4- 8G(f,.r)2(a.r)/r6 + 4Ga.f,r.f0/r4)r 

+{14(fo.r)2/r4- 7ft/r2}a] + O ( r 3 ) ,  (10.12a) 

v.a; = 0. (10.12 b) 

A particular integral of (10.12a) is 

fiz = &[(G2(f0. a) log r + 52a. rf, . r/r2} f, 

+ { - 19f; a .  r/r2 + 43(f0. r)2 a. r/r4 - 48a. for. f,/r2) r 
+{- 14j,210gr-9(f,,.r)2/r2)a] +O(r-l). 

By direct differentiation it may be verified that this satisfies the continuity 
equation (10.12 b). 

The complementary function of the equations (10.3) is a solution of Stokes 
equations and so cannot contain a term in log T .  

Thus, we have found that 1. (10.13) 
No other functions of O( 1) 
or O ( r )  which contain logr 

8, = z~~{31f,.afo-7f,2a}logr + 
Therefore, in equation (10.2), 

d = z~{31f,.af,-7f,2a}. (10.14) 

Hence, we see that u2 is just a Stokes flow around the body which tends to a 
uniform stream a t  infinity of velocity z&{31fo. af, - 7f; a}. Let f2 be the dimen- 
sionless force on the body due to (u2, p 2 ) .  Then 

f = fo+Rfl+(R210gR)f2+O(R2). (10.15) 

From the definition of the Stokes resistance tensor (see paragraph preceding 
(7.19)), the dimensionless Stokes force on a body past which fluid streams with 
dimensionless velocity d is dj  #ij. Hence 

( f 2 ) i  = &id31(fO)k~dfo)j - 7(f& (fo), aj> #ij* (10.16) 

Since (fo)k = al#kz the latter may be written as 

( f 2 ) i  = &{31#ij(ak#lilaJ - 7~<j(a,41c,4~crnarn)l #jnaa.  (10.17) 
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As may be seen by replacing a by -a, the contribution of this term to the vector 
force on the body has the property that reversal of the flow at infinity merely 
reverses the algebraic sign of its contribution to this force. 

Upon substituting (10.17) into (10.15), converting to dimensional form, and 
combining the result with equation (7.37), we obtain the following expression 
for the force on an arbitrary body to O(R2 log R): 

(10.18) I 
Fi = + (2 .F)  + { ~ c U }  O(R2), 

where 

( lF) i  = 6npcU[S,j +&R(355, - 8$j(uk#kz q/u2)) 
+ Z h R 2  log R(31#<j(Uk#kt qlU2) - 7 S i j ( ~ 5 5 ~ ~ 5 5 ~ ~ ~ ~  qn/172)}1 (#jn un/u), 

and as before 

J 
Sets of conditions for which the lift force (2F) i  is zero have been given in $8. 

In particular for flow along axis 1 (i.e. q. = Sli U )  the drag on a body of arbitrary 
shape is 

F1 = ~ ~ P C U [ $ I ,  +iW3&$1j-@1}+~% (R210gR) ( # l j # l j $ 1 1 )  +O(R2)I* 

Alternatively, if F, is the Stokes vector force on the body due to flow along the 
axis 1 (i.e. (F,)j = 67r,~cU$,~), then 

If, in addition, the orientation of the body is such that the stream velocity is 
parallel to a Stokes principal axis of resistance, the body experiences no lift force 
in Stokes flow, and hence (F,)l = Fs. When this is substituted into (10.19), we 
obtain for the drag on the body the expression 

This agrees with Proudman & Pearson's (1957) result for the sphere (F, = 67rpcU) 
and Breach's (1961) result for axisymmetric flow past an oblate or prolate 
spheroid. 

An ambiguity arises in applying (10.20) or its three-dimensional analogue 
(10.18) which is not clearly brought out in the work of the above authors. If 
we replace R in (10.20) by cUp/p, the resulting equation becomes 

- Fl = 1+-+-(-)210g(T)+O(R2). FSP 8 %P CUP 
Fs 167rp2 5 16np2 

Since the characteristic particle dimension c is arbitrary, the contribution of the 
logarithmic term to the force is not uniquely defined. This is not surprising since 
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the R2 term can always be written in the form Q(F8/16~,u~U)2R210gk, where k 
is a constant of O( 1) whose value must depend explicitly on the shape of the body 
and on the value assigned to c. Consequently (10.20) can always be expressed in 
the form 

2 

= I + ( _ F f i _ )  167~pcU R’g ’( E U  F‘ ) R210g(kR)+o(R2). (10.21) 
4 3  

From equation (10.18), i t  is noted that if a body is such that the force on it to 
O(R) is reversed by a reversal of flow a t  infinity, then the force is in fact reversed to 
order R2 log R. Hence if a body possesses a type of symmetry necessary to make 
a particular component of 2F zero (see $ S ) ,  were we then to reverse the flow at 
infinity the Same component of the vector force on the body would be reversed to 
order R210g R. However, the drag, given by equation (10.19), is reversed to this 
order, whatever the shape of the body. There is no reason to expect such general 
force-reversal theorems for the force to order R2, although as pointed out in $8, a 
body which transforms into itself under three successive reflexions in mutually 
perpendicular planes necessarily possesses this force reversal property to all 
orders in R. 

It should be noted that even for a body for which we have force reversal of 
some or all components of the force to O(R2log R), we do not have a reversal of 
the velocity field in the inner expansion to this order. This may be easily seen 
from equation (6.13) for ul. 

11. Summary 
In  this summary, the results are given in both vector-polyadic t(for those 

more familiar with this notation) and tensor notation. 
Consider a fixed rigid particle of arbitrary shape, with fluid streaming past it  

with velocity U. Let c be any characteristic particle dimension, p be the fluid 
viscosity, p the density, U = JUI the magnitude of the velocity and R = cUp/p 
the Reynolds number. 

DeJinitions. We define the following. 
(i) +( = +?) is the dimensionless Stokes resistance dyadic for the particle 

(ii) u = UjU is a unit vector in the direction of streaming. 
(iii) 8, denotes the surface of any sphere containing the particle in its interior. 
(iv) r denotes the entire fluid space exterior to the particle. 

$ WitJh respect to multiple products of polyads we employ the ‘nesting convention’ of 
Chapman & Cowling (1953) in conjunction with the ‘sterile’ or ‘impotent’ operation sign, 
0, signifying no operation. Thus 

(abcd)h(efg) = a(b.g) (c.f)  de = ade(b.g) (c.f). 

t (abcd . . . efgh) = bacd . . . efgh 

[$ij( = $ji) being the dimensionless Stokes resistance tensor]. 

Also, the affix t denotes a transposition operator defined as follou~s : 

and 

This notation is due to Dr L. E. Scriven. Products and transpositions of polyadics may 
t’hen be similarly defined, e.g. 

(abcd ... efgh)? = abcd ... efhg. 

{xaibscsdz)&{z  ejf,gj) = {C C a,d,e,(b,.g,) (cj.fj)}. 
i I i j  
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(v) d S  is a directed element of surface area (parallel to the outer normal to 
the surface considered) and d V is an element of volume-these together with the 
operator V being made dimensionless with the particle size c. 

(vi) The dyadic function K = K(r) [or tensor function Kij(r)] (r = dimension- 
less position vector of a point relative to an origin a t  the centre of s,) is a dimen- 
sionless dyadic [or tensor] field, dependent solely on the geometry of the body and 
the location of r, which is defined in terms of the Stokes velocity field as follows: 

If fluid streams past the body with (dimensional) velocity V and if V; is the 
(dimensional) Stokes velocity field arising from this streaming flow, then 

V; = K . V ,  

or in tensor notation 

This dyadic [or tensor] field can be determined from a knowledge of the Stokes 
velocity fields arising from streaming flows past the body for any three non- 
coplanar directions of flow. The term -2K [or -2Kij] refers to that part of K 
[or Kij] which is homogeneous in r-2 in its asymptotic expansion for large r .  
(Here, r = Irl.) 

(vii) F is the vector force experienced by the particle, when the fluid streams 
past it with velocity U, and lF and 2F are, respectively, those parts of F (to what- 
ever order in R is being considered) which are reversed and unaltered by a 
reversal of the uniform flow at infinity. 

(21;) i = KijT$. 

Results. The main results may be expressed as follows: 
1. To O(R), F is given by the relation 

F = 1F+2F+{, / . .~U}o(R),  (11 .1)  

(11.2CC) 

where in vector-polyudic notation, lF and 2F are given by the expressions 

IF = 67rpcU[+. a +&R{3(+. +. a)  - ( a .  +. a)  (+.a)}] 

and 2F = ,ucUR(I-aa).A:aa, ( 1 1 . 3 ~ ~ )  

in which I is the dyadic idemfactor, and A ( =  At) is a dimensionless triadic, 
dependent solely on the geometry of the particle, which is defined in terms of the 
Stokes velocity field by: 

A = 1  [(_,Kt) d S  + {(-2Kt) dS)T] - 1 [{(VK) I- (VK) 6 {(Kt) K)] d I' ; ( 11.4u,) 
2 LL & I -  

in tensor notation IF and 2F are given by 

(Wi = 6n/hcu[aij +&R{3+ij - ai j (ak +ME,))] Qjrnanz (11.Xb) 

and ('?F)i = /LcUR[E,E~(G~, - ~ l i ~ l l ) ]  A,,j, (11 .3b)  

in which Almj ( =  Aljj ,)  is a dimensionless third-order tensor, dependent solely 
on the geometry of the particle, which is defined in terms of the Stokes velocity 
field by 

(1  1.4b) 
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an alternative form of this equation is 

in which ( v ~ ) ~  is thej th  component of the Stokes velocity field due to a uniform 
stream at infinity of velocity unity in the i th direction, (e i ) jk  is the (j, k) com- 
ponent of the rate-of-strain tensor of the same Stokes velocity field, and (-2vi)j 
is the term homogeneous in r-2 in the asymptotic expansion of (v& for large r .  

2.  The 'irreversible' force 2F is a lift force. When the body possesses certain 
symmetry properties (summarized in $8)' then some or all components of 2F 
are zero. 

3. 2F is not always zero. 
4. The vector force P on a particle of arbitrary shape, as calculated by the 

F = 1 P + 2 F + { ~ ~ ~ U ) o ( R ) ,  (11.5) 

classical Oseen equations, is, to O ( R ) ,  
- 

where 1F = IF; (11.6) 

in vector-polyadic notation 2p is given by 
- 

2F = p c U R ( I - a a ) . A : a a ,  (11.7a) 

where A is a triadic (different from A) given in terms of the Stokes velocity field 
by the expression 

-A J- (f{(VK)t.K)+[I((VK)t.K)]f)dV; ( 1 1.8 a)  
2 r  

in tensor notation 28 is given by 
- 

(2F)i = ,~~UR[a,a j ( iSg-a iaJ]  L41n?j, ( 1 1 . 7 b )  

where Jlmj is a third-order tensor (different from Atmj)  given in terms of the Stokes 
velocity field by 

{(-&mJ dflj + (-2KjJ d s m )  

{ K k v n K k l , j  + h ' k j  + K l j  Kkl ,m} v? ( b, 

or alternatively by 

5. The 'irreversible' force 2F is a Zift force. When the body possesses certain 
symmetry properties (summarized in $8) sufficient to make a particular com- 
ponent of 2F zero, then the same component of Z P  is zero. 

6. 2p is not always zero, and not always the same as 2F. 
7.  The solution for F to order R2 log R is 

(11.9) F = 1 F + 2 F + { ~ ~ ~ } ~ ( ~ 2 ) ,  
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where 2F is the same as that given in equations (11.3a, b ) .  IF has an additional 
term of order R2 log R added, and is now given in vector-polyadic notation by the 
expression 

lF = 6npcU[Q,. a + &R{3( Q, . Q, . a )  - ( a .  Q, . a)  (Q, . a)}  

+ &R2 log R) {31(Q,. Q, . a)  ( a .  Q, . a)  - 7(a .  Q, . Q, . a)  (Q, . a))] ( 1 1.10a) 

or in tensor notation by 

('F)i = 67~ ,~cU[6 i j  + ~ ~ { 3 ~ ~ j - 6 i j ( a k ~ k z a z ) }  

+ &dR2log R, { 3 1 $ i j ( a k  $kZaZ) - 76ij(cwZ$kZ$kn #jmam- ( 1 1 *  lob)  

However, the additional term of O(R210g R) in this solution is not unique, since 
it is not possible to separate the terms involving (RZ) and (R2 log R )  in a unique 
manner. Perhaps the major conclusion of the present investigation is that the 
Oseen linearization scheme does not, in general, yield the correct vector force 
on a body to O(R). 

We are grateful to Dr J. R. A. Pearson for help. One of us (R. G. C.)  is also 
grateful to the Department of Scientific and Industrial Research for a Research 
Studentship. 

Appendix 1 

particular component of the tensor AZmj is zero. 
We consider here various types of symmetry for bodies which imply that a 

Suppose I = m = j ;  then 

Using the same argument as was used in deriving equation ( 7 . 2 7 ) ,  we obtain 

Let the axes (01, O,,-O,) be axes fixed in the body and in space. Now consider 
another set of axes (Or, Or, O,,),  coincident initially with( 0,, O,, O,) ,  which we rotate 
and/or reflect in such a manner that each of the axes Or, 02,, Or, lie along one of 
the axes O,, 0,, 0, or their continuations, 0-,, 0-3, respectively, in their nega- 
tive directions. We may represent such a rotation by (a l ,  a,, as) where a,, a,, a, 
are the labels of the fixed axes into which O,,, O,,, Oy transform, e.g. ( 1 ,  - 2, - 3) 
is a rotation through an angle n about the 0, axis. 

Consider the class of bodies whose surface B when specified in terms of the 
variables xl, x,, x, (Cartesian co-ordinates defined by the axes 0,, 0,, 0,) is of the 
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same form as when i t  is specified in terms of xi,  x;, x; (defined by the axes 01,, 02,, 03, 
after the rotation), i.e. the surface B isf(x,, x2, x3) = 0 or f ( x ; ,  x i ,  x;) = 0. Now 
suppose the transformation from (xl ,  x2,  x3) variables to (xi, x;, x;) variables is 
given by 

x;  = aijxj .  (A 1.1) 
From equation (7 .37) ,  

P P 

(A 1.2) 

where qmj and DLmj are third-order tensors given by 

ctmj = 8{(-2vl)mdflj + (-2vJjdflm1, 

D l m j  = (vrn)/c ( e J k p  (vj)p* 

(A 1.3) 

(A 1.4) 

Suppose that Clmj and Dzmj are transformed respectively to Cjmj and Dimj. NOW, 
since the body is similarly situated with respect to both the old and new axes, and 
since Stokes equations are invariant under rotation and reflexion, we must have 

q J q r ( x ’ )  = c p q r w .  (A 1.5)  

Also by the tensor transformation formula 

C g q A X ’ )  = aptaqmarjClrnj(x’). (A 1.6)  

Hence CpqAx) = aplaqmarjGrnj(x’)* (A 1.7) 

From the definition of the transformation (a,, a2, a3), the transformation 
(A 1.1)  is 

X ;  = X (8iilaj1 sgn (aj))xj* 
i 

Therefore aij = {sgn 4 a.1. 3 

Substituting in equation (A 1.7), we obtain 

(A 1.8) 

From equation (A 1.3), gTnj is symmetric in m, j. 

if either i = lail and sgn(a,amaj) = - 1, 

or 1 = la1[, m = lajl, j = Ia,I and sgn (ulamaj)  = - 1. 
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It is seen that if either of these conditions holds then (DZmi) d V = 0, the inner 

boundary of I? (i.e. the surface B of the body) being of the same form in either the 
dashed or undashed system of co-ordinates. 

either i = lai] and sgn(ala,aj) = - 1 (A 1 . 1 1 ~ )  

or 1 = la,], m = lajl,j = la,/ and sgn(a,a,aj) = -1 .  (Al.1lh) 

We have already shown that Almj = 0 if 1 = m = j .  We shall now deal with 
various other cases which may occur. 

Case 1 , l  = m + j, or I = j + m (because of symmetry). For this we cannot have 
condition (A 1.11 b)  holding, since this would imply I a, I = laj I or 1 = j .  Condition 
(Al.11a) shows that A,, = 0 if i = /ail and sgn(aj) = -1 ,  e.g. A,,, = 0 if 
(al ,  a,, a,) has values: 

s, 
Hence from equation (A 1.2), Azmj is zero if 

(1 ,  - 2 , 3 ) ;  (1,  - 2 ,  -3 ) ;  ( - 1 ,  -2 ,3) ;  (-1, - 2 ,  -3) .  

Case 2, 1 + m = j .  For this, conditions (A 1.11 a )  and (A 1.11 b )  become identi- 
cal. Therefore Aljj = 0 if i = lai[ and sgn(a,) = - 1. 

Case 3, 1, m, j all diflerent. Then condition (A 1 . 1 1 ~ )  gives Almj = 0 for the 
following values of (a, a, a,) : 

( - 1 , - 2 , - 3 ) ;  ( - 1 , 2 , 3 ) ;  ( 1 , - 2 , 3 ) ;  ( 1 , 2 , - 3 ) .  

Also the condition (A 1.11 b )  gives A,,, or A,,, zero for the following values of 

(a1 a, a31 : ( 1 , 3 , - 2 ) ;  (1 , - -3 ,2) ;  ( - - 1 , 3 , 2 ) ;  ( - 1 , - 3 , - 2 ) ,  

with similar sets of transformations for A,,, and ( - 1 , 3 , 2 )  is a combination 
of transformations (1 ,3 ,  - 2), (1 ,  - 2 , 3 )  and ( - 1, - 2, - 3) applied in succession, 
these being transformations already included for A,,, = 0. A similar result holds 
for ( -  1, - 3, -2) .  Thus we may omit the transformations ( -  1, 3, 2) and 
( - 1, - 3, - 2 )  from our list. 

All the transformations mentioned in the above three cases are of the following 
four types. 

(a )  A rotation about an axis through an angle 7 ~ .  

( b )  A rotation about an axis through an angle in. 
( c )  A reflexion about a plane formed by two axes. 
(The plane through axes 2 and 3 will be labelled 1.) 
( d )  A simultaneous reflexion in all three such planes. 
For a particular [lmj] we have found those transformations of the above four 

types that, when applied to the co-ordinates leave the form of the particle surface 
B unchanged, would imply that Almj is zero. We may equivalently consider the 
transformation as transforming the body into itself, rather than a transformation 
ofaxes. We present in table 1, for each value of [lmj], alist of those transformations 
of the types (a )  to ( d )  given above, for which, ifthe body is such that anyone of these 
transformations transforms the body into itself, one may conclude that Almj is 
zero. 
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Now from equation (7.37) 

By the use of table 1, together with this formula, we shall now find what types 
of symmetry a body will require for some or all the components of (2F)i  to vanish 
for either a general or a particular value of CG. There are several separate cases 
which we shall consider. 

Rotation Rotation 
through through 
an angle an angle Triple 

Values of [Zmj] 77 t n  Reflexion reflexion 

[112] [121] [211] 
[113] [131] [311] 
[221] [212] [122] 
[223] [232] [322] 
[331] [313] [133] 
[332] [323] [233] 
[123] [132] 
[231] [213] 
[312] [321] 
[ l l l ]  [222] [333] 

Axes 

1, 3 
1, 2 
2, 3 
1, 2 
2, 3 
1 ,  3 

Axes 

- 

1 
2 
3 

1, 2, 3 

Planes 
2 
3 
1 
3 
1 
2 

1, 2 ,  3 
1 ,  2 ,  3 
1, 2, 3 
1,  2,  3 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

TABLE 1 

(I) (zF)i  to vanish whatever the direction of U 

For this we require AZmj = 0 for all I, m, j. From table 1, this will happen if the 
body goes into itself under either of the following sets of transformations when 
account is taken of redundant cases: 

(i) Triple reflexion, \ 
(ii) Rotations through &r about axes 1 , 2  and 3.1 

(A 1.12) 

(11) (2F) i  to vanish for  U Zying in plane 3 

If U is (U,, U,, 0)) then for (2F)i  to vanish we only require Azmi to be zero for the 
following sets of values for [Zmj]: [112], [122], [311], [212], [311], [312], [322] 
together with those formed by interchanging m and j. 

This follows if the body goes into itself under the following set of transforma- 
tions, together with those given in case I 

Rotation through IT about axis 1.  Rotation frn about axis 3. (A 1.13) 

(111) (2F)3 to vanish i f  U lies in p h n e  3 

This happensifatmi = Ofor thefollowing setsof [Zmj]: 13111: [312], [332] and those 
with m a n d j  interchanged. It can be easily shown that this follows if the body goes 
into itself under the following transformation (not iiicluded in previous cases) 

Reflexion in plane (3). (A 1.14) 
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(IV) (2F)l and (2F)2 to vanish i f  U lies in plaize 3 

This happens if Azmj = 0 for the following sets of [lmj]: [112], [122], [all], [212] 
and those with m a n d j  interchanged. 

The relevant sets of transformations (not included in previous cases) reduce to 

Rotation through n- about axis 3. ( B  1.15) 

(V) (2F)i  to vanish i f  U lies crlong the axis 1 

("), must vanish for all bodies for U = (U,, 0 ,  0), since this is the contribution of 
(") to the scalar drag. However for (2F) to vanish requires Almj to be zero for 
[Zmj] equal to [211] or [311]. 

The relevant sets of transformations (not included in previous cases) reduce to 

Rotation through TT about axis 1. (A 1.16) 

(VI) (ZF), and (2F)2 to vanish i f  U lies along the axis 1 

(2F), vanishes for all bodies, and (2F)2  vanishes if Almj = 0 for [lmj] equal to 

The relevant sets of transformations (not included in previous cases) reduce to 

Reflexion in plane 2. (A 1.17) 

It is noted that this case is really a combination of the result (A 1.14) of case 
(111) together with the result that the scalar drag component of (2F)i  on a body 
must vanish. 

[all]. 

Appendix 2 
I n  this appendix, we shall show by considering a particular example that 

2F and 2F - 2F are not always zero. This will involve demonstrating that Azmj + 0 
and Azmj - Jlmj + 0 for some value of 1, m, j .  

Consider the uniform streaming past a slightly deformed sphere whose 
surface is defined in spherical polar co-ordinates by 

= f c p k ( o ,  $)) (A 2.1) 

where all lengths have been made dimensionless by the radius of the undeformed 
sphere. p k ( 6 ,  $) is a surface harmonic of order k which, for our particular example, 
we will take to be P 3 ( O ,  $) = r4(a3/ar:) ( 1 / r ) ,  which is seen to be equal to a3/ar,3 ( l / r )  
evaluated for r = 1. B is to be taken so small that squares and higher-order terms 
may be neglected. 

Let v be the Stokes flow around such a body due to a uniform velocity W a t  
infinity. Then 

with the boundary conditions 

v2v = p-Tp, v . v  = 0, (A3.2) 

(A 2.3) 
v + W  as r-+co. I 
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These equations have a solution of the form 

(A 2.4)  

where (vs, ps)  is the solution of the Stokes equations for streaming flow past a 
sphere of radius unity and (vp7 p J  is a perturbation field which satisfies Stokes 
equations. (v8, p J  may be easily shown to be given by 

( w , ) ~  = K ( l - $ r - l - & 3 ) -  Wkrkri2(r-3-r-5)7 
(A 2.5)  

( 3 7  P p  ) is given by Lamb's (1932, p. 594) general solution of Stokes equations as 

1 p - 1 ~  = +-3Wr ' 
k h - j  

(A 2.6)  

x - ~  = Q r 4 W . V .  x-, = 0 if n +  4. (A 3.9) 

It may be verified that this solution for ( v ~ ,  p,) is correct, by showing (by direct 
substitution) that the boundary conditions (A 2.3)  are satisfied to order e. 

Writing 

it may be shown that if ( vPJ i  is the i th component of vD for J.t;. = djjh then 

(21 P A  ) .  t = +e.. t]li F ~1m"3mjrkH(1333) rmrkH(j1333)I 
+ &(r2 + 6 )  H( ih333)  +& 12r2 + 23)  r,H(h333) 

+ g[Si,H(333) +r ,H( i333)  + 3r ir ,H(333)] ,  (A2.10) 

where the results eAlmSim = 0 and e'h17,1rlrm = 0 have been used. Differentiating 
with respect to rn we obtain 

(vph)i, n = + SmjrkH(n'333) 
+ 6, , , rkH(j /333)  + 6,,rn,H(j1333) +rmrkH(nj1333)] 
+ & ( r 2 +  6)H(n ih333)  +&r,H(ih333) ++K(12r2+23)  r ,H(nh333)  

+ &( 1Sr2 + 23) 6, ,H(h333) +$rnr iH(h333)  + 4[SiAH(n333) 

+ r ,H(ni333)  + 6,,H(i333) + 3rir,H(n333) + 36,,rAH(333) 

+ 3h,,riH(333)].  (A 2.11) 
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in a manner similar to that for (vPJi, we see that i t  is given by 

(vsu)i = 8ui(1 - $ ~ - ~ - + 3 ) - r . r  4 a u 4  3(r-3-r-5) .  (A 3.12) 

Differentiating with respect to rn gives 

( z $ , , ) ~ , ~  = $[6,irn(r-3+r-5) -8inru(r-3-r-5) -6 un r . ( r -3 - - ! r5 )  2 

--rirVrn( - 3 ~ - ~ + 5 r - ' ) ] .  (A2.13) 
Therefore 

(esu)in = $[Suirnr-5+6~nrir-5-8inr,(r-3-r-5)  - r i rv rn (  - 3 ~ - ~ +  5r-')], (A 3.14) 

(esv)in being the (i, n) component of the rate-of-strain tensor corresponding to 
the flow field v, for which 5 = aj,. 

We will now proceed to calculate the value of A,,1 to order e. From equation 

where I? is the volume exterior to the deformed sphere. It is seen that since we 
wish to calculate A,,, only to order e,  we may take I? to be the volume exterior to 
the sphere r = 1, since the integrand (oJi (e3Iin ( ~ 7 , ) ~  vanishes on the surface of the 
deformed sphere. From $8 we know that for the sphere r = 1 the value of A311 
must be zero, i.e. 

I- I- 

Substituting for v from equations (A 2.4) into equation (A 2.15) and usingequa- 
tion (A 2.16) we obtain 

In  order to evaluate these integrals we will need to use the following four 

Lemma 1, u and t are positive integers and w is any number such that 
lemmas : 

w < '1c - t. Then, if A, is a homogeneous polynomial in the ri of degree t, 

I- 

r1"AtH(ula2 ... a,)dV = 0 if t < u. J, 
Proof. The condition w < u-t ensures the convergence of the integral. The 

result is immediate by the orthogonality property of spherical harmonics since 

H(nla2. . . a,) = r-'-l (surface harmonic of order u) 

and A, can be expressed as 

A, = rt  (sum of surface harmonics of order 6 t ) .  
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i5emm.a 2, ri H(iala2 ... a,) = - H(ala2.  .. a,). 
Proof 

H (  a, a2 . . . a,) = r-"--l (homogeneous polynomial of degree u in ri) 

= r-,-lBu say. 
a 

ari 
Hence ri H(ia l ,  a$ . . . a,) = - r-u-l (u + 1)  B, + r-,-lri - B, 

= - y - U - l B u  = - H ( a  1 2 . - . % ) .  a 
Lemma (3 ) ,  ri ri = r2. 

Lemma (4), eijkrjrk = 0. 
P 

Consider the J (-2wp3)1dX1 which appears in the equation (A3.17). 
S L  

(-2aD3)1 = [&r2rlH(3333)+&-lr3H(333)] from equation (A2.10). 

{&rr:H(3333) + gr-lr: r3H( 333))dX7 
I S L  

Hence 

which by lemma (1) gives 

where (A 2.19) 

Consider now 

jr [ g ~ ~ ~ ~ e ~ ~ , { S ~ ~ r , H ( Z 3 3 3 )  + r,r,H(jZ333)} +g$(r2 + 6 )  H(ih333) 

( z l p J i  (es3)in (vsJn dV. This is seen to be s,. 
+$'(12r2+ 23)riH(h333) i- ${&,H(333) +r,H(i333) + 3rirlH(333)}] 

x $[63irnr-5 + S3nrir-5 - Sinr3(r-3 --r-5) - rirnr3( - 3s-5 + 5r-7)] 

x [aln( 1 - $r-l- %r3) - rlrll$(r-3 - r5)] d V .  (A 2.20) 

Using the lemmas 1 to 4 given above, we see that most of the terms in this 
expression are zero. Hence 

H(333).(r:r3)dV(8r-3- l2r-*- 12++ 19r-6-3r-S). 
9 -- 

- 3Jr  

Performing the radial integration we obtain 

In a similar manner we consider 
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which is seen to be equal to 
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Jr [g€~jijk€3am(6,j6k,H(Z333) +6,jr,H(nZ333) + ~?,~,r,H(jZ333) 

+ 6,,rmH(j1333) + rmrk H(njZ333)) +&(r2 + 6) H(ni3333)  i- &rn H(i3333)  

+&(12r2+ 23)r tH(n3333)  +2K(12r2+ 23)  6i ,H(3333) +$r,riH(3333) 

+ +{St,H(n333) +r ,H(ni333)  + s3 ,H( i333)  + 3rir,H(n333) 

+ 3~?~,r ,W(333)  + 36,,riH(333)}] 

x [&( 1 - 2r-l - $r3) - r 1 r i7 (r-, - r5)] 
x [ 6 1 , ( 1 - ~ r - 1 - ~ r - 3 ) - r  1 r n 4  3 ( r - 3 - r - 5 ) ] d B .  (A 2 . 2 2 )  

By using the lemmas 1 to 4 this finally gives 

( A  1 . 2 3 )  

Substituting the results ( A  2. IS), (A 2.31) and (A3 .23)  in the equation (A 2.17), we 
obtain 

A,,, = J(#-z++$+),+o(~~) = +$$ J c + O ( c 2 ) .  ( A  2.24) 

It may be easily proved that 

( A  2.25) 

Hence A,l1 = &yGT€+0(€2).  (A 2.26)  

By taking U = ( U ,  0,O) we see that equation (7 .32)  gives 

(2F)3 = pcURAIll = ,UCUR(&$$T~-~- O(e2)}.  (A 2.27) 

Hence we have proved the statement given a t  the end of 4 8 that the contribution 
2F to the vector force on a body is not necessarily zero. 

In  a manner similar to that used above, we will now calculate A,,, for the same 
deformed sphere. From equation (9.16) 

where I? may now be taken to be the volume exterior to the sphere r = 1. A s  
before, ISL ( - 2 W P J l d 4  = +$J .  ( A  2.29) 

The values of the two remaining integrals in equation (A 2.28) may be evaluated 
by the use of lemmas 1 to 4 to give 

f, ("pl)i ('s3)i,ldbT = + P J ,  ( A 2 . 3 0 )  

JT (wp3)i,1(t'81)+dv = -zJ '  ( A 2 . 3 1 )  
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Substituting equations (A 2.29), (A 2.30) and (A 2.31) into (A 2.28), we obtain 
- 

A311 = d(+ -3 +*) + O ( E ~ )  = O(e2).  (A 2.32) 

Again by taking U = ( U ,  0,O) we see that equation (9.16) gives 

(2F)3 = pCURLZ311 = ,ucUR{O(C~)).  (A 2.33) 

Combining this result with (A 2.27) gives 

(2F)3- (2F)3  = ,LLcUR{$~CTE+O(E~)}. (A 2.34) 

Hence we have proved the statement given at the end of $9  that 2F and 2H are 
not necessarily the same. Thus for bodies not possessing any of the symmetry 
properties given in $8, Oseen’s method gives, in general, an incorrect value for 
the force on the body to O ( R ) .  

The authors have shown by considering a different example that, as one would 
expect, 2T is in general non-zero. The proof of this result is not given here, since 
for bodies not possessing any of the symmetry properties of $8 for which 2F 
might be non-zero, we cannot use Oseen’s method for calculating the force on 
the body to O(R). 
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Note added in proof 
The geometric symmetry conditions tabulated in equation (8.2), leading to 

the relation A = 0 and thus to the vanishing of the ‘irreversible’ force vector 
2F, are not the only ones which can give rise to this condition. For example i t  
can be shown that A = 0 for all bodies possessing two axes of helicoidal 
symmetry$ intersecting at right angles. As a special case this result shows, 
incidentally, that equation ( 8 . 2 b )  may be modified so as only to require that 
the body should transform into itself under rotation through h7r about each of 
two (rather than three) mutually perpendicular axes in order that A may vanish. 

1 A body possesses an axis of helicoidal symmetry, say the OXl axis, if it retains the 
same relations to the OX, and OX, axes when the latter are rotated about the O X ,  axis 
through a definite angle in either direction, the angle not being equal to 0, &r or T. 
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